CHROM. 13,988

R_{M} AND $\log P$ VALUES OF 5-NITROIMIDAZOLES

M. C. GUERRA*, A. M. BARBARO, G. CANTELLI FORTI, M. T. FOFFANI and G. L. BIAGI Istituto di Farmacologia, Universirà di Bologna, Bologna (Italy)

P. A. BOREA

Istituto di Farmacologia, Università di Ferrara, Ferrara (Italy)
and
A. FINI

Istituto di Chimica degli Intermedi, Università di Bologna, Bologna (Italy)
(Received May 12th, 1981)

SUMMARY

The chromatographic R_{M} values of a series of nitroimidazoles and their $\log P$ values were determined in view of a study of their structure-activity relationships as mutagenic agents. The equations describing the relationship between R_{M} and $\log P$ values show a low correlation coefficient. The introduction of the molar refractivity of the $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ groups yields a significant improvement in the correlation coefficient.

The molar refractivity could be an expression of the adsorption activity of the silica gel layer.

INTRODUCTION

The nitroimidazoles play an important role in chemotherapy, mainly for their antibacterial, antitrichomonal and antiamoebic activity ${ }^{1.2}$. Recent toxicological studies revealed that many of these compounds have mutagenic or carcinogenic activity ${ }^{1}$.

Structure-activity relationships demonstrated the importance of physico-chemical parameters in determining the biological activity of nitroimidazoles. The influence of the lipophilic character and electronegativity of the R_{1} groups on the antischistosomal and antiprotozoal activity has been discussed ${ }^{3.4}$. A relationship between antibacterial activity and electro-reduction was shown by Chien and Mizuba ${ }^{5}$. The frontier electron density is important for the protein binding of metronidazole derivatives ${ }^{6}$.

The purpose of this work was to study the relationship between the chromatographic R_{M} values for a series of 5 -nitroimidazoles and their $\log P$ values with a view to studying their structurc-activity relationships as mutagenic agents.

EXPERIMENTAL

Determination of ionization constants

The $\mathrm{p} K_{\mathrm{a}}$ values of 5-nitroimidazoles were determined by means of a spectrophotometric and/or potentiometric technique in water at $25^{\circ} \mathrm{C}^{7,8}$.

In the spectrophotometric method, two wavelengths were chosen at which the dissociated and undissociated forms have different molar absorptivities. The compounds were assayed at the same concentration by means of a Perkin-Elmer 124 double-beam spectrophotometer. The absorbance of each solution at different pH values enabled the relative amounts of dissociated and undissociated forms to be $K_{1} \quad K_{z}$
determined. As $\mathbf{I M H}{ }^{+} \rightleftharpoons \mathrm{IM} \rightleftharpoons \mathrm{IM}{ }^{-}$, the $\mathrm{p} K_{1}^{\prime}$ or $\mathrm{p} K_{2}^{\prime}$ values could be obtained ${ }^{9}$.
The potentiometric titrations were carried out by means of an Orion 601 potentiometer. The ionization constants reported in Table I are referred to the highest basic or acidic fraction in each compound.

Determination of R_{M} values

The reversed-phase chromatographic technique for the determination of \boldsymbol{R}_{M} values has been described previously ${ }^{10,11}$. The polar mobile phase was ammonium chloride buffer (1 M) of pH 9.0 , alone or in various mixtures with methanol. With compound 14 the mobile phase was sodium acetate-Veronal buffer of pH 3.6 . The non-polar stationary phase was a silica gel G F_{254} layer impregnated with a $5 \%(\mathrm{v} / \mathrm{v})$ solution of silicone oil [silicone DC $200(350 \mathrm{cSt})$ from Applied Science Labs. (State College, PA, U.S.A.)] in diethyl ether. The concentration of methanol in the mobile phase ranged from 5 to 30%. In other chromatographic systems the mobile phase had the same composition but the stationary phase was a silica gel $G F_{254}$ layer impregnated with a $5 \%(\mathrm{v} / \mathrm{v})$ solution of squalane, undecane or liquid paraffin (Merck, Darmstadt, G.F.R.) in light petroleum.

The 5 -nitroimidazoles were dissolved in methanol or ethanol ($1 \mathrm{mg} / \mathrm{ml}$) and 1 $5 \mu \mathrm{l}$ volumes of solution were spotted on the plates in random locations. The developed plates were dried and sprayed with an alkaline solution of potassium permanganate. Most of the compounds were also visible by their fluorescence when the silica gel $G f_{254}$ plates were viewed under an ultraviolet lamp. Finally, the compounds could be detected by spraying the plates with a 1.5% solution of titanium(III) chloride in 10% acetic acid and heating at $80^{\circ} \mathrm{C}$ for 20 min in order to reduce the nitro group ${ }^{12}$. The plates were then sprayed with diazotized sulphanilic acid ${ }^{13}$.

Determination of partition coefficients

The octanol/water partition coefficients were determined according to the classical procedure ${ }^{14}$. The aqueous layer was ammonium chloride buffer (1 M) of pH 9.0. The partition coefficient of compound 14 was determined with aqueous sodium acetate-Veronal buffer (0.14 M) of pH 4.6. The concentration of the compounds in the octanol and/or aqueous layer was determined by UV measurement with a PerkinElmer 124 double-beam spectrophotometer.

RESULTS

Ionization constants

The ionization constants of the test compounds are reported in Table I, together with literature data ${ }^{7,15}$.

The substituent groups R_{1} and R_{2} do not have a substantial effect on the basicity of the $\mathrm{N}-3$ atom in the imidazole ring. In fact, the $\mathrm{p} \mathrm{K}_{1}^{\prime}$ values do not differ very much from the $\mathrm{p} K_{1}^{\prime}$ values of 1-methyl-5-nitroimidazole (2.12) or 2 -methyl-5nitroimidazole (2.73) as given in or calculated from the literature ${ }^{7}$. However, the $\mathrm{p} K_{1}^{\prime}$ values of compounds 10,13 and 20 are much higher, owing to the presence of basic moieties in their side-chain. On the other hand, the lower $\mathrm{p} K_{1}^{\prime}$ values of compounds 12, 17 and 18 are due to the presence of a strong electron-withdrawing R_{1} or \mathbf{R}_{2} group. The $\mathrm{p} K_{2}^{\prime}$ values are referred to the ionization of the $\mathrm{N}-1$ atom of compounds 1 and 2 or the carboxyl group in the side-chain of compound 14.

R_{M} values

The chromatographic work showed that in the system 5% silicone oil-ammonium chloride buffer most of the test compounds migrated when the mobile phase was only buffer. However, the addition of methanol was necessary to obtain suitable R_{F} values for compound 15 . The R_{M} values were plotted against the composition of the mobile phase. For each compound there was a range where a linear relationship between R_{M} values and methanol concentration applied. The equations of these straight lines were used to calculate a theoretical R_{M} value at 0% methanol in the mobile phase (Table II). The very close correlation between the extrapolated and the experimental R_{M} values at 0% methanol from Table II shows the validity of the extrapolation technique (eqn. 1).

$$
\begin{aligned}
& R_{M}(5 \% \text { sil. })(\text { exptl. })=-0.024+1.018 R_{M}(5 \% \text { sil. }) 21 \\
& \left(a=R_{M}\right)
\end{aligned}
$$

The R_{M} values of 21 compounds measured at different methanol concentrations when the stationary phase was squalane, undecane or liquid paraffin were used to calculate the extrapolated R_{M} values reported in Table II. Eqns. 2, 3 and 4 show a very good correlation between the extrapolated R_{M} values ($a=R_{M}$) on silicone-impregnated layers and those on squalane, undecane or liquid paraffin-impregnated layers.

	n	r	s
$R_{M}(5 \%$ undecane $)=0.389+0.971 R_{M}(5 \%$ sil. $) 21$	0.949	0.207	
$R_{M}(5 \%$ squalane $)=0.438+1.070 R_{M}(5 \%$ sil. $) 21$	0.941	0.249	
$R_{M}(5 \%$ paraffin $)=0.481+0.848 R_{M}(5 \%$ sil. $) 21$	0.927	0.221	

The data in Table II and the intercepts of eqns. 2, 3 and 4 show that in the undecane, squalane or liquid paraffin systems the R_{M} values are higher than in the silicone system. This could be duc to a stronger intcraction with the support and/or to a higher solubility in squalane, undecane or liquid paraffin than in silicone oil. How-

TABLEI
IONIZATION CONSTANTS AND LOG P VALUES OF 5-NITROIMIDAZOLES

Empirical formula	Molecular weight	$p K_{1}^{\prime}$	$p K_{2}^{\prime}$	$\begin{aligned} & \log P \\ & \text { (observed) } \end{aligned}$	$\log P$ (calc.)	$\Sigma M R_{1.2}$
$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$	113.8		$\begin{aligned} & 9.37 \\ & \left(9.20^{7}\right) \end{aligned}$	-0.16	-0.17^{3}	0.206
$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}$	127.10	(2.73)	8.79	0.49	$0.39^{\text {b }}$	0.668
$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$	171.16	$\left(2.55^{7}\right)$		-0.10	$-0.11^{\text {c }}$	1.749
		2.38				
$\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$	169.18	2.73		1.06	$1.49{ }^{\text {d }}$	2.061
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{3}$	155.11	1.60		-0.69	$-0.69^{\text {e }}$	1.253
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$	244.27	2.08		0.90	$0.88{ }^{\text {r }}$	3.802
$\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$	247.26	1.82		-0.36	-0.30:	3.306
$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Cl}$	219.63	2.27		0.60	$0.18^{\text {h }}$	2.695
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{4}$	200.16	$\begin{aligned} & 1.41 \\ & \left(1.2^{15}\right) \end{aligned}$		-0.38	$0.70^{\text {r }}$	2.365
$\mathrm{C}_{9} \mathrm{H}_{4}+\mathrm{N}_{4} \mathrm{O}_{3}$	266.23	5.00		0.07	0.06	3.343
$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{3}$	157.12	2.04		-0.03	$-1.0 \%^{k}$	1.284
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$	246.23	0.26		0.85	$0.56{ }^{\text {r }}$	5.071
$\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$	239.29	7.60		-0.32	$0.00^{\text {m }}$	3.684
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5}$	289.25		3.81	-1.00	$-1.50{ }^{\text {n }}$	5.024
$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}$	303.27	2.73		2.03	$2.23{ }^{\circ}$	5.260
$\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$	201.20	2.95		-0.63	$-0.68^{\text {P }}$	2.362

TABLE I (continued)

No.	Compound	Structure ($X=N$)	
		\boldsymbol{R}_{1}	R_{2}
17	DA 3839		$-\mathrm{CH}_{3}$
18	DA 3840		$-\mathrm{CH}_{3}$
19	DA 3853		$-\mathrm{CH}_{3}$
20	DA 3854	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$	$-\mathrm{CH}_{3}$
21	MY 40/20	$-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{SO}_{2}-\mathrm{CH}_{3}$	$-\mathrm{CH}_{3}, \mathrm{CH}_{2}$
22	DA 3851	$-\mathrm{CH}_{3}$	

${ }^{2} \log P_{\text {No. } 1}=\log P$ (imidazole) $+\pi\left(\mathrm{NO}_{2}\right)=-0.08-0.09=-0.17 ; \log P$ (imidazole) was taken from ref. 20 and $\pi\left(\mathrm{NO}_{2}\right)$ from ref. 20 by subtracting the $\log P$ values of 2 -nitropyridine (No . 1785) and 3 -nitroquinoline (No . 6712). ${ }^{5} \log P_{\mathrm{No.} 2}=\log P_{\mathrm{No.} 1}+\pi\left(\mathrm{CH}_{3}\right)=-0.17+0.56=0.39$; see ref. 20 from which a π value of 0.56 was taken for the CH_{3} group.
c See refs. 19 and 20.
${ }^{d} \log P_{\text {No. } 4}=\log P_{\text {No. } 1}+\pi\left(\mathrm{CH}_{3}\right)+\pi\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right]=-0.17+0.13+1.53=1.49$. See ref. 20. A π value of 0.13 for the CH_{3} group attached to nitrogen was calculated by subtracting the $\log P$ values of pyridine (No . 1871) and quinolone (No. 6824) from the $\log P$ values of N-methylpyridone (No. 3541) and N-methylquinolone (No. 7964), respectively. A π value of 1.53 was taken for the isopropyl group.
${ }^{c} \log P_{\text {No. } 5}=\log P_{\text {No. } 1}+\pi\left(\mathrm{CH}_{3}\right)+\pi(\mathrm{CHO})=-0.17+0.13-0.65=-0.69$. See ref. 20 for the π value of the CHO group.
${ }^{r} \log P_{\mathrm{Na.} .6}=\log P_{\mathrm{No} .2}+\pi\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCOCH}_{3}\right)=0.39+0.49=0.88$. A π value of 0.49 for the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCOCH}_{3}$ group was obtained in the following way. From ref. $20, \log P\left(\mathrm{NH}_{2}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{CH}_{3}\right)-\log P\left(\mathrm{NH}_{2}-\stackrel{\text { II }}{\mathrm{C}}-\right.$ iis
 -0.63 . Finally, $\pi\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{NH}-\mathrm{C}-\mathrm{OCH}_{3}\right)=\pi\left[\left(\mathrm{CH}_{3}\right)_{2}\right]-0.63=1.12-0.63=0.49$.
${ }^{8}$ See refs. 20 and 21.
${ }^{\text {b }} \log P_{\mathrm{No} .8}=\log P_{\mathrm{No.} 2}+\pi\left[\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{Cl}^{2}\right) \mathrm{CH}_{2} \mathrm{OH}\right]=0.39+\pi\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)+\pi\left(\mathrm{CH}_{2} \mathrm{OH}\right)=0.39+0.82-1.03=$ 0.18.
${ }^{\mathrm{i}} \operatorname{Ig} \mathrm{g} P_{\mathrm{No} .9}=\log P_{\mathrm{No} .1}+\pi\left(\mathrm{CH}_{3}\right)+\pi\left(\mathrm{CH}_{2} \mathrm{COONH}_{2}\right)=-0.17+0.13-0.66=-0.70$. See ref. 20 for the π value of $\mathrm{CH}_{2} \mathrm{COONH}_{2}$.
${ }^{j} \log P_{\mathrm{No.} 10}=\log P_{\mathrm{No.} 1}+\pi\left(\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N} \square \mathrm{O}\right)=\log P_{\mathrm{No.} 1}+\pi\left(\mathrm{CH}_{3}\right)+\pi\left(\mathrm{CH}_{2} \longrightarrow \mathrm{~N} \longrightarrow 0\right)=$ $-0.17+0.56-0.33=0.06$. See ref. 20 for the π values of the CH_{3} and $\mathrm{CH}_{2} — \mathrm{~N}<0$ groups.

Empirical formula	Molecular weight	$p K_{1}^{\prime}$	$\boldsymbol{p} K_{2}^{\prime}$	$\begin{aligned} & \log P \\ & \text { (observed) } \end{aligned}$	$\log P$ (calc.)	$\Sigma M R_{1.2}$
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{3}$	262.23	0.96		-0.30	-0.67^{9}	3.941
$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{O}_{6}$	402.36	1.00		-0.70	$-0.54{ }^{\text {r }}$	7.739
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{5}$	310.27	2.19		0.31	0.83`	5.166
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$	270.34	5.07		-0.38	$0.51{ }^{1}$	5.086
$\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{SO}_{4}$	233.24	2.04		-0.35	-0.82^{4}	2.841
$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$	167.16	2.56		1.00	1.10^{\prime}	1.918

${ }^{k} \log P_{\text {No. } 11}=\log P_{\text {No. } 1}+\pi\left(\mathrm{CH}_{3}\right)+\pi\left(\mathrm{CH}_{2} \mathrm{OH}\right)=-0.17+0.13-1.03=-1.07 . \mathrm{A} \pi$ vaiue of 0.13 was taken for the CH_{3} group in the 1 -position; see ref. 15 for the π value of the $\mathrm{CH}_{2} \mathrm{OH}$ group.

 pyrimidine groups.
${ }^{m} \log P_{\mathrm{No.14}}=\log P_{\mathrm{No.1}}+\pi\left(\mathrm{N}-\mathrm{CH}_{3}\right)+\pi\left(\mathrm{CH}_{2} \longrightarrow \mathrm{~N}-\mathrm{N}-\mathrm{CH}_{2}\right)=\log P_{\mathrm{No.1}}+3 \pi\left(\mathrm{~N}-\mathrm{CH}_{3}\right)+$ $\pi(N<\mathrm{N})=-0.17+0.39-0.22=0.00$.

${ }^{0} \log P_{\text {No. } 17}=\log P_{\text {no. }}-\pi\left(\mathrm{CH}_{3}\right)+\log P(1,2$ methylenedihydroxybenzene $)+\pi(\mathrm{CH}=\mathrm{CH})=-0.11-0.56+$ $2.08+0.82=2.23$.
${ }^{p}$ See ref. 20: $\pi\left(\mathrm{CH}_{2}-\stackrel{\mathrm{OH}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2} \mathrm{OH}\right)=\log P 10.75+\pi(\mathrm{OH}$ aliphatic $)=0.05-1.12=-1.07$. Therefore $\log P_{\mathrm{No} 10}=$ $\log P_{1.2}=1.07=0.39-1.07=-0.68$.
${ }^{4}$ See ref. $15: \log P_{\text {No. } 20}=\log P_{\text {no. } 2}+\log P$ (pyrimidine $)+\log P\left(\mathrm{NH}_{2} \mathrm{COCH}_{3}\right)=0.39-0.40-0.66=-0.67$.
${ }^{5}$ See ref. 20: $\log P_{\text {No. 21 }}=\log P_{\text {No. } 2}+\log P_{\text {No. } 2}+\log P($ pyrazine $)+2 \pi\left(\mathrm{COCH}_{3}\right)=0.39+0.39-0.22-1.10=$ -0.54 .
${ }^{3}$ See ref. 20: $\log P_{\text {No. } 22}=\log P_{\text {No. } 2}+\log P_{\text {No.2 }}+\pi$ (isopropyl) $=0.39+0.39+0.05=0.83$.
${ }^{2}$ See ref. 20: $\log P_{\mathrm{No.23}}=\log P_{\mathrm{No.2}}+\pi\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\right)+\pi\left(\mathrm{CH}_{2}-\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right)=0.39-0.24+0.36=0.51$.
${ }^{4}$ See ref. 20.
${ }^{\circ} \log P_{\mathrm{No.} 26}=\log P_{\mathrm{No.} 1}+\pi\left(\mathrm{N}-\mathrm{CH}_{3}\right)+\pi\left(-\mathrm{CH}-\mathrm{CH}_{2}\right)=-0.17+0.13+1.14=1.10$.

TABLE II
\boldsymbol{R}_{M} VALUES OF 5-NITROIMIDAZOLES

Compound No.*	Silica gel $G F_{254}$ impregnated with 5% silicone oil			$a=R_{M}$			$\begin{aligned} & R_{s} \\ & (0 \% \text { sil. }) \end{aligned}$
	$\boldsymbol{R}_{\mathrm{M}}$ (exptl)	Eqn. from TLC		Undecan		paraffin	
		$a=R_{\text {M }}$	b				
1	-0.19	-0.19	-0.01	0.22	0.23	0.27	-0.41
2	0.26	0.26	-0.01	0.46	0.47	0.55	0.01
3	0.08	0.08	-0.02	0.42	0.53	0.60	-0.31
4	0.72	0.72	-0.02	1.31	1.37	1.36	0.14
5	-0.26	-0.16	-0.02	0.08	0.15	0.18	-0.66
6	0.79	0.81	-0.02	1.48	1.61	1.35	-0.14
7	0.33	0.35	-0.02	0.86	1.04	1.06	-0.14
8	0.32	0.33	-0.02	0.98	0.93	1.12	-0.38
9	-0.11	-0.07	-0.01	0.39	0.60	0.68	-0.44
10	0.97	0.97	-0.03	1.39	1.95	1.47	0.23
11	-0.15	-0.14	-0.01	0.15	0.28	0.28	-0.50
12	1.28	1.31	-0.03	1.66	2.02	1.42	-0.86
13	1.44	1.44	-0.02	1.64	1.91	1.57	0.95
14	0.69	0.69	-0.03	1.45	1.29	1.19	0.60
15	1.68	1.68	-0.04	2.04	2.23	1.85	1.16
16	-0.18	-0.13	-0.02	0.30	0.18	0.13	0.02
17	0.96	0.95	-0.02	1.00	1.11	1.15	0.54
18	1.58	1.58	-0.04				0.50
19	1.08	1.11	-0.03	1.48	1.49	1.30	0.00
20	1.60	1.56	-0.03	1.56	1.58	1.57	1.19
21	-0.30	-0.30	-0.01	-0.23	-0.26	-0.19	-0.72
22	0.66	0.68	-0.02	1.14	1.27	1.33	0.03

[^0]ever, the slopes of eqns. 2, 3 and 4 are very close and therefore show that the hydrophobic characteristics of the test chromatographic systems are very similar.

Mercier ${ }^{16}$ and Hulshoff and Perrin ${ }^{17}$ pointed out the adsorption activity of the silica gel layer towards the compounds investigated. In addition, Bird and Marshall ${ }^{18}$ pointed out that silica gel can alter the pH of buffers. In fact, in the present experiments the interaction with the stationary phase is shown by the R_{M} values measured on unimpregnated silica gel G F_{254} layers and reported in Table II. However, the correlation between the R_{M} values measured on silica gel $G F_{254}$ layers impregnated with 5% silicone oil and the R_{M} values measured on unimpregnated silica gel $G F_{254}$ layers, as shown by eqn. 5 , is not very high:

$R_{M}(5 \%$ sil. $)=0.484+1.031 R_{M}(0 \%$ sil. $) \quad$	n	r	s
22	0.893	0.306	

This indicates that the addition of silicone oil to the stationary phase is able in some way to alter the partitioning process between the stationary phase and the mobile phase.

$\log P$ values

The $\log P$ values of test compounds are reported in Table 1 , together with $\log P$ values taken from the literature ${ }^{19-21}$ or calculated according to Hansch and Leo ${ }^{20}$. The relatively low correlation coefficient of eqn. 6 agrees with the finding of Lin et $a l^{22}$, who observed substantial differences between the calculated and experimental $\log P$ values of nitroimidazoles:

	n	r	s
$\log P($ exptl. $)=0.054+0.736 \log P($ calcd. $)$	22	0.895	0.336

Relationship between $\log P$ and R_{M} values

The equation describing the relationship between the R_{M} values with 5% silicone oil and the $\log P$ values shows a very low correlation coefficient:

$$
\begin{gathered}
R_{M}(5 \% \text { sil. })=0.576+0.297 \log P \\
(F=2.453 ; P<0.25)
\end{gathered}
$$

As a further step in the analysis, the molar refractivity summed over the R_{1} and R_{2} groups was considered (Table I):

$R_{\mathrm{M}}(5 \%$ sil. $)=-0.334+0.291 \Sigma M R_{1,2} \quad$| n | r | s |
| :--- | :--- | :--- |
| 22 | 0.800 | 0.408 |

$$
\begin{equation*}
(F=35.60 ; P<0.005) \tag{8}
\end{equation*}
$$

Moreover, the introduction of the $\log P$ term into eqn. 8 yielded the equation

$$
\begin{array}{rl}
& n \\
R_{M}(5 \% \text { sil. }) & =-0.364+0.304 \log P+0.292 \Sigma M R_{1.2} \tag{9}\\
22 & 0.869 \\
(F & =29.23 ; P<0.345 \\
0.05 ; t \log P=2.978 ; t \Sigma M R_{1.2} & =7.071)
\end{array}
$$

A comparison of eqns. 7, 8 and 9 shows the superiority of eqn. 9. In particular. an analysis of variance shows that the introduction of the $\log P$ term into eqn. 8 yields a significant improvement in eqn. 9. The lipophilic character expressed by the $\log P$ values and the molar refractivity of the R_{1} and R_{2} groups explain 75% of the variability in the R_{M} data. Although this is not a very high correlation coefficient, eqn. 9 shows that the molar refractivity could be an expression of the adsorption activity of the silica gel layer. When eqns. 7,8 and 9 were calculated by using the R_{M} values at 0% silicone, eqns. 10,11 and 12 were obtained. The correlation coefficient of eqn. 12 is much lower than that of eqn. 9.

$$
\begin{aligned}
& R_{M}(0 \% \text { sil. })=0.101+0.163 \log P \\
& \begin{array}{lll}
n & r & s \\
22 & 0.210 & 0.576
\end{array} \\
& \text { (} F=0.92 \text {; n.s.*) }
\end{aligned}
$$

[^1]\[

$$
\begin{array}{lrccc}
& & n & r & s \\
R_{M}(0 \% \text { sil. })= & -0.569+0.212 \Sigma M R_{1,2} & 22 & 0.674 & 0.435 \\
& (F=16.68 ; P<0.005) & & & \\
R_{M}(0 \% \text { sil. })= & -0.585+0.168 \log P+ & & & \\
+0.213 M R_{1.2} & & 22 & 0.708 & 0.426 \\
\quad\left(F=9.56 ; P<0.005 ; t \log P=1.334 ; t \Sigma M R_{1.2}=4.176\right)
\end{array}
$$
\]

In particular, the introduction of the $\log P$ term into eqn. 11 did not improve the correlation coefficient of eqn. 12 significantly. All this is obviously a consequence of the relatively low correlation coefficient of eqn. 5 between the R_{M} values with 5% silicone oil and those with 0%. However, it also shows that the presence of the silicone oil exerts an important influence.

In conclusion, the results confirm the usefulness of this thin-layer chromatographic (TLC) technique as a general procedure for the determination of $\boldsymbol{R}_{\boldsymbol{M}}$ values. In contrast to the l-octanol shake-flask partition coefficients, the TLC procedure can tolerate impurities, requires little material and gives rapid results. However, the poor correlation between the R_{M} and $\log P$ values indicates that most of the 5-nitroimidazoles deviate from the linear relationship.

Unger et al. ${ }^{23}$ pointed out that only small, basic, unhindered pyridines deviated from the agreement between shake-flask and reversed-phase high-performance liquid chromatographic procedures, presumably because of binding to residual silanol sites. As the 5-nitroimidazoles are small, basic molecules, their deviation could be due to a similar kind of phenomenon, viz., interaction with the silica gel G layer. Finally, a series of experiments in our laboratory have shown the usefulness of the present R_{M} values in studying the relationship between the structure and mutagenic activity of 5nitroimidazoles.

REFERENCES

[^2]
[^0]: * See Table I.

[^1]: * n.s. $=$ not significant.

[^2]: 1 E. R. Bambury, in M. E. Wolff (Editor), Burger's Medicinal Chemistry, Part II, Wiley, New York, 1979.
 2 W. J. Ross, in M. E. Wolff (Editor), Burger's Medicinal Chemistry, Part II, Wiley, New York, 1979.
 3 Y. Lin, P. B. Hulbert, E. Bueding and C. N. Robinson, J. Med. Chem., 17 (1974) 835.
 4 M. W. Miller, H. L. Howes, Jr., R. V. Kasubick and A. R. English, J. Med. Chem., 13 (1970) 849.
 5 Y. W. Chien and S. S. Mizuba, J. Med. Chem., 21 (1978) 374.
 6 D. R. Sanvordeker, Y. W. Chien, T. K. Lin and H. J. Lambert, J. Pharm. Sci., 11 (1975) 1797.
 7 G. G. Gallo, C. R. Pasqualucci, P. Radaelli and G. C. Lancini, J. Org. Chem., 29 (1964) 862.
 8 A. Albert and E. P. Serjeant, Ionization Constants of Acids and Bases, Methuen, London, 1962.
 9 T. C. Bruice and G. L. Schmir, J. Amer. Chem. Soc., 80 (1958) 148.
 10 G. L. Biagi, A. M. Barbaro, M. F. Gamba and M. C. Guerra, J. Chromatogr., 41 (1969) 371.
 11 G. L. Biagi, A. M. Barbaro, M. C. Guerra and M. F. Gamba, J. Chromatogr., 44 (1969) 195.
 13 M. R. Grimmet and E. L. Richards, J. Chromatogr., 18 (1965) 605.
 14 T. Fujita, J. Iwasa and C. Hansch, J. Amer. Chem. Soc., 86, (1964) 5175.
 15 M. Windholz (Editor), The Merck Index, Merck, Rahway, NJ, U.S.A., 1976.
 16 M. Mercier, Complexes par Transport de Charge et Coefficients de Partage des Phenothiazines. University of Louvain Press, Louvain, Belgium.
 17 A. Hulshoff and J. H. Perrin, J. Chromatogr., 65 (1976) 120.
 18 A. E. Bird and A. C. Marshall, J. Chromatogr., 63 (1971) 313.
 19 D. R. Sanvordeker, J. W. Chien, T. K. Lin and H. J. Lambert, J. Pharm. Sci., 64 (1975) 1797.
 20 C. Hansch and A. J. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, 1979.
 21 M. W. Miller, H. L. Howes, R. V. Kasubick and A. R. English, J. Med. Chem., 13 (1970) 849.
 22 Y. Lin, P. B. Hulbert, E. Bueding and C. H. Robinson, J. Med. Chem., 17 (1974) 836.
 23 S. H. Unger, J. R. Cook and J. S. Hollenberg, J. Pharm. Sci., 67 (1978) 1364.

